1. GENERAL INFORMATION

The University of Arizona is located in Tucson, Arizona, a picturesque community surrounded by mountains and home to almost one million residents. The Systems and Industrial Engineering (SIE) Department at the University of Arizona was established in 1961 as the nation's first department of systems engineering. Since then, the SIE Department has achieved international prestige for its contributions to the inter-disciplinary design of large-scale complex systems involving people, technology, and information. With the introduction of a modern industrial engineering curriculum in 1972 and a reliability and quality engineering degree in 1987, the department offers a truly diverse and successful graduate program. Career opportunities for graduates of the Systems and Industrial Engineering programs are outstanding. Over the years, graduates from these programs have found employment in the nation's leading corporations, research institutes, and universities.

The SIE Department offers opportunities for study leading to the Master of Science (MS), Master of Engineering (MEng), and the Doctor of Philosophy (PhD) degrees. For the MS degree, a student may specialize in Systems Engineering (SYE), Industrial Engineering (INE), or Engineering Management (EMG). At the doctoral level, the department offers a PhD in Systems and Industrial Engineering. The PhD degree requires a high level of achievement in scholarly and independent research culminating in a written dissertation. In addition, the department offers Professional Certificates in Systems Engineering and in Engineering Management.

This handbook informs graduate students of the requirements for completing various graduate degree programs within the SIE Department. You can visit the Graduate College website for current policies and info, http://grad.arizona.edu/new-and-current-students . This handbook is further intended to provide prospective applicants with information to enable them to assess the opportunities for graduate studies in this department and to assist students in preparing their programs of study.

1.1 Application Guidelines

For regular admissions, applicants should have a Bachelor's degree in engineering, mathematics, or physics. Students with Bachelor's degrees in other disciplines may also apply to the graduate program and receive regular admission after successfully completing required remedial coursework.

Application for admission is made by submitting an Application for Admission form to the Graduate College’ Online Application. On that form, MS applicants should indicate Systems, Industrial, or Engineering Management in the major area. MEng students should indicate Engineering as the major, and PhD students should indicate Systems and Industrial Engineering as the major. Prospective students must submit academic transcripts, a letter of intent describing their reasons for wanting to join our graduate program, and three letters of reference. In addition, all PhD applicants must submit GRE scores while those MS applicants who seek a departmental teaching or research assistantship must submit them. Online students are not eligible for assistantships. Those students who enter the MS program without GRE scores must submit them if they want to be considered for a departmental teaching or research assistantship afterwards. International students must also submit TOEFL scores.

Inquiries about the graduate programs in this department can be sent electronically or by regular post. Emails should be addressed to gradapp@sie.arizona.edu.

For more detailed information on applying to the Master’s program, see section 2.1. For more information on applying to the Doctoral program, see section 4.1. Information is also on-line through the SIE Department and Graduate College web sites (see section 1.3).

1.2 Academic Advising

Upon arriving at the University of Arizona, students should contact the Department Head or the Chair of the Graduate Studies Committee to receive initial academic advising. At that time, students are assigned a tentative academic advisor according to their interests. PhD students and MS students who want to actively pursue research need to identify a research advisor. Students are encouraged to contact all faculty members in
their area of interest for this purpose and choose their research advisor with these interests in mind. Once a student and a faculty member agree to work together on research, the student informs the department’s Student Academic Specialist and the tentative academic advisor of this change. In some cases, particularly when a student has special skills, the student may choose to accept a research assistantship from one professor while continuing to pursue a thesis or dissertation topic under the guidance of another advisor. In such cases, the student must make her/his intent clear to both faculty members and the Graduate Student Advisor. Online students should contact the Graduate Student Advisor, graduateadvisor@sie.arizona.edu

1.3 Other Resources

This handbook is available on-line at http://sie.engr.arizona.edu/graduates/files/grad_handbook_10-11.pdf. Other on-line resources include the following:

- University of Arizona
 http://www.arizona.edu/
- SIE Department
 http://www.sie.arizona.edu
- Graduate College
 http://grad.arizona.edu/
- Graduate Student Academic Services
 http://www.grad.arizona.edu
- Graduate College Forms
 https://grad.arizona.edu/gcforms/academic-services-forms
- Application
 https://apply.grad.arizona.edu/users/login
- UAccess Student
 http://UAccess.arizona.edu
- International Student Center
 https://global.arizona.edu/international-students

2. MASTER OF SCIENCE PROGRAM

This program is designed to prepare individuals for high-level professional work in systems, industrial, engineering management, or reliability and quality engineering. Students must follow all procedures outlined in the handbook for Master’s/Specialist Candidates published by the Graduate College. The handbook is available on-line as well as on paper from the Student Academic Specialist or the Graduate College (see section 1.3).

2.1 Undergraduate Preparation and Admission Requirements

To undertake graduate work in SIE, students are expected to have undergraduate training in mathematics, physics, computing, and mathematical modeling. Specifically, all incoming students are expected to meet the following fundamental requirements:
1. At least four semesters of mathematics, beginning with a two-semester sequence in calculus (e.g., Math 125a, 125b, 223, and 254 or SIE 270)

2. At least three semesters of calculus-based physics and general engineering science (e.g., Physics 141, and 241)

3. At least one semester of computing (e.g., an introductory course using a high-level language such as Java, C++, C#, Visual Basic, or C, with significant computational work)

Most undergraduate programs in science and engineering provide the required background. Students deficient in one or more of these areas may be admitted into the MS program on Provisional Status. Advancement to Regular Graduate Status will not be considered until all deficiencies have been completed (see section 2.2).

In addition to the fundamental requirements, all students who enter the MS program must also demonstrate satisfactory understanding of the following SIE course requirements:

SIE 305 Introduction to Probability and Statistics
and at least two of these three courses:
SIE 321 Probabilistic Models in Operations Research
SIE 340 Deterministic Models in Operations Research
SIE 350 Modeling and Analysis of Systems Dynamics

Where appropriate, graduate-level courses may be taken to remove SIE undergraduate course deficiencies.

Admission is based on evaluation of the applicant's letter of intent, undergraduate transcript, GRE scores (for students who seek for a departmental teaching or research assistantship), TOEFL score (for international students), letters of recommendation, and professional experience. Applicants are expected to have an undergraduate GPA of 3.00 on the last 60 units of course work, and GRE scores of 500 verbal (or 575 TOEFL), 700 quantitative, and 650/4.5 analytical.

2.2 Graduate Status

2.2.1 Regular Graduate Status

Students with adequate undergraduate preparation (see section 2.1) who meet the minimum admissions requirements are normally admitted with Regular Graduate Status. All graduate students must be granted Regular Status before the semester in which they plan to graduate. Without Regular Status, a student cannot receive an advanced degree from the SIE Department.

2.2.2 Non-Degree Status

Students holding a Bachelor's degree, or its equivalent, from a college or university that grants degrees recognized by the University of Arizona may attend graduate-level courses without being admitted to a graduate degree program. Such students may enroll in graduate-level course work as their qualifications and performance permit. However, no more than 12 units earned while in this status may later be applied toward an advanced degree awarded by the university.

Those students who are on Non-degree Status and who later decide to pursue a graduate degree must submit a Graduate Degree Program Application for Admission and the admission fee to the Graduate College, as well as the additional documentation required by the SIE Department.
2.3 Degree Requirements

Some of the requirements for an MS degree may be classified as general requirements, common to all programs in the SIE Department. Each area of specialization (i.e., SYE, INE, and EMG) has specific requirements. All requirements and standards are the same for online and main campus majors:

1. Students must earn at least 30 units of graduate credit (courses numbered 5xx, 6xx, 9xx). Credit for SIE 695A, SIE 900, SIE 920, and SIE 930 may not be counted toward the MS degree. No course may be counted toward the requirements for more than two degrees (earned at UA or elsewhere). For example, an SIE 5xx course can be counted toward the MS in SYE and PhD in SIE; but it cannot be counted toward a third degree (e.g. MS in another program).

2. The majority of all course work must be taken within the SIE Department. At most, 3 units of SIE 599 (Independent Study) may be applied toward the MS degree, subject to prior approval by the Graduate Studies Committee. The committee considers such factors as there being no course in the university that would serve the same purpose, as well as the expectation that a tangible product (such as a final report) will be available for evaluation by the committee. Students must complete the independent study course form and submit to the SIE Graduate Studies Committee prior to registering for SIE 599. Additionally the topic of study must regard an area of academic study and should not be directly related to the student’s research topic.

3. Each student enrolled in an MS degree program is expected to gain in-depth knowledge within a particular area of study and complementary knowledge from a related area. To meet this expectation, the student's Plan of Study must contain a primary and a secondary area of concentration, each consisting of courses that are related to a common theme. The primary and secondary areas must include at least 9 units and at least 6 units, respectively, of SIE graduate-level courses. Up to 3 units of thesis or project work may be used to satisfy the concentration requirements. In general, SIE courses whose three-digit course numbers share a common middle digit are related to a common theme. However, an area of concentration need not satisfy this general rule to be approved by the Graduate Studies Committee. In cases where the primary and secondary areas of concentration might not be readily apparent, the student can facilitate the Graduate Studies Committee's review of the Plan of Study by providing a brief statement explaining the nature of the intended areas of concentration.

4. All MS students must choose one of the options listed in section 2.4. Students wishing to pursue the Doctoral degree are encouraged to choose the thesis or exam option.

The University of Arizona requires that all requirements for an MS degree must be completed within six years.

Specific requirements for the respective degrees are as follows:

Systems Engineering (SYE) majors must include SIE 550, 554A, and either 520 or 530 in their Plan of Study.
Industrial Engineering (INE) majors must include SIE 530 and either SIE 540 or 545 in their Plan of Study.
INE majors must also complete one course from the SIE 56x or 58x series.
Engineering Management (EMG) majors must include SIE 567, SIE 515, SIE 522, SIE 557, and SIE 514 in their Plan of Study.

The remaining elective credits will be selected with the approval of an advisor and the Graduate Study Committee. If you have taken the undergraduate version of any courses for your BS degree, you can NOT take them again for credit on your MS degree.

Performance Requirements

a) An M.S. student shall submit his/her Plan of Study after 12 course hours of study taken while enrolled in the SIE department. Students failing to meet this requirement will be so notified, and will be required to
complete the Plan of Study immediately. A student who has not completed his/her Plan of Study by this time may be dismissed from the program.

b) All M.S. students must have taken all core courses for their degree within their first four semesters of study.

c) An M.S. student shall submit a progress report to his/her advisor by the end of each academic year (last day of final exams in the Spring semester). A progress report form will be provided to students by the SIE Student Academic Specialist in April of each year for this purpose. Based on this input, the Graduate Studies Committee determines whether or not the student is making satisfactory academic progress. If the Graduate Studies Committee determines that the student is not making satisfactory progress, they state a set of requirements and corresponding deadlines for the student to achieve to remain in the program. Students not meeting these additional requirements may be recommended to the Department Head and Graduate College for dismissal from the program.

2.4 MS Degree Options

All MS degree candidates must pass a final examination before the degree is awarded. This requirement may be met by one of the following options:

A. Thesis Option – This option requires 24 units of regular course work, followed by 6 units of thesis research (SIE 910). The thesis option is designed for students who wish to work with a faculty member on a specific research topic. Thesis work is an excellent complement to course work and constitutes a valuable opportunity to develop an appreciation for research. Only outstanding students are permitted to select the thesis option.

The thesis is prepared under the guidance of the major professor and is reviewed by members of the examining committee prior to the oral presentation. The examining committee consists of the major professor and at least two other members of the faculty selected on the basis of the student's course work and field of interest. Other members of the department may also examine the thesis if they wish to do so.

A final, CD copy of each thesis must be provided to the Student Academic Specialist for placement in the departmental library.

B. Report Option – This option requires 27 units of regular course work, followed by 3 units of project work (SIE 909) leading to a written report. The project report option is designed for students who wish to work on an applied research project. The topic should have practical significance and require application of graduate-level course material. The report typically involves the application of new methodologies to an actual industrial problem. If the faculty advisor agrees and the project is suitable, up to three students may work together on the same project and produce a joint report.

The final examination for this option is the same as that required for the thesis option.

C. Course Work Option – This option requires 33 units of course work approved by the Graduate Studies Committee. At least 3 of these units must be taken at the 600-level in the SIE Department with a grade of A or B. The Graduate Studies Committee's evaluation of the student's performance in this 600-level course constitutes the final examination for the MS degree. If you are an Engineering Management student anticipating this option then it is strongly recommended that you take SIE 530 in preparation for the 600 level course.

D. Examination Option – This option requires 30 units of course work, approved by the Graduate Studies Committee. The student must also pass the Doctoral Qualifying Exam.
2.5 Preparing the MS Plan of Study

The MS Plan of Study is the student's contract with the university concerning specific course requirements the student must satisfy to become eligible for the MS degree. As soon as they arrive on campus, students see the Department Head or the Chair of the Graduate Studies Committee for referral to a tentative advisor.

Students prepare a Plan of Study as soon as possible (no later than immediately after the completion of 12 hours of course work), obtain the advisor’s signature, and return the form to the Student Academic Specialist. The Student Academic Specialist submits the form to the SIE Graduate Studies Committee for review and signatures. In reviewing the proposal, the committee considers the following:

- Does the program meet the course work requirements specified in section 2.3?
- Upon completion of the MS program, will the student have an acceptable background in the academic areas that the SIE Department considers to be of primary importance?

Areas of primary importance in the SIE Department are as follows:

- Computer Software Engineering (SIE 531, 547, 57x, 631)
- Engineering Statistics (SIE 53x)
- Intelligent Control (SIE 570, 589)
- Manufacturing Systems (58x, 68x)
- Optimization (SIE 54x, 64x)
- Probabilistic Models and Techniques (SIE 52x, 62x, except SIE 528)
- Production Systems (SIE 56x, 66x)
- Engineering Management (SIE 567, 557, 514, 515, 522)
- Systems Theory (SIE 55x, 65x)
- Quality and Reliability (506, 508, 606, 608)

If the Plan of Study is approved at the department level, the Graduate Student Advisor sends it to the Graduate Student Academic Services Office before the required Graduate College deadlines. If it is not approved at the college level, the Plan of Study is returned to the student for changes and re-submission.

For information on specific courses that may not be included in the Plan of Study, students should consult with their advisor, the Graduate Student Advisor, or the Chair of the Graduate Studies Committee. Typically credit is not allowed for courses offered by other departments that duplicate SIE course offerings.

2.6 Typical Plans of Study for the MS Degree

In this section, typical Plans of Study for all three MS programs (SYE, INE, and EMG) are provided. First, two typical Plans of Study for SYE/INE are provided:

- Plan A is intended for students with a Bachelor's degree in either Systems or Industrial Engineering or for other especially well-qualified students.
- Plan B is more slowly paced than Plan A and is intended for students with undergraduate degrees in engineering, mathematics, physics, or computer science. It assumes that the student has completed four semesters of calculus-level mathematics, two semesters of calculus-level physics, and computer programming.
PLAN A

MS in Systems Engineering

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE 530*</td>
<td>SIE 550*</td>
</tr>
<tr>
<td>SIE 554A*</td>
<td>SIE 520 or SIE 6xx</td>
</tr>
<tr>
<td>SIE 5xx</td>
<td>SIE 5xx</td>
</tr>
<tr>
<td>SIE 5xx</td>
<td>SIE 6xx</td>
</tr>
</tbody>
</table>

Summer – Thesis Research (6CH) or Third semester of 9CH

MS in Industrial Engineering

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE 530*</td>
<td>SIE 540** or SIE 546</td>
</tr>
<tr>
<td>SIE 545** or SIE 544</td>
<td>SIE 56x or SIE 58x</td>
</tr>
<tr>
<td>SIE 56x or SIE 58x</td>
<td>SIE 5xx</td>
</tr>
<tr>
<td>SIE 5xx</td>
<td>SIE 6xx</td>
</tr>
</tbody>
</table>

Summer – Thesis Research (6CH) or Third semester of 9CH

*Required for the degree

**SIE 540 or SIE 545 is required for the MS in Industrial Engineering.

If you have taken the undergraduate version of any courses for your BS degree, you can NOT take them again for credit on your MS degree. If this is the case, an additional SIE 5xx course can be substituted.

PLAN B

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE 305</td>
<td>SIE 321</td>
</tr>
<tr>
<td>SIE 340</td>
<td>SIE 5xx</td>
</tr>
<tr>
<td>SIE 5xx</td>
<td>SIE 5xx</td>
</tr>
</tbody>
</table>

Second Year
Please be aware that any 300 or 400 level courses CANNOT be used toward your degree, these would just be used to satisfy pre-requisites.

The second year of Plan B is similar to the first year of Plan A, with one exception: one of the 5xx courses in each semester may be replaced by thesis research. Hence, there is no summer or third semester required in this plan, as there is in Plan A.

And, below are four typical Plans of Study for MS in EMG.

MS in Engineering Management

Note: *Required for the degree*

PLAN A: 18 month (Masters Report Option)

a. First Semester (Fall)
 i. SIE 567 – Financial Modeling for Innovation* (3 CH)
 ii. SIE 522 – Decision Making Under Uncertainty* (3 CH)
 iii. One of:
 1. SIE 530 – Engineering Statistics (3 CH)
 2. SIE 531 – Simulation, Modeling and Analysis (3 CH)

b. Second Semester (Spring)
 i. SIE 514 – Law for Engineers and Scientists* (3 CH)
 ii. Two of:
 1. SIE 564 – Cost Estimation (3 CH)
 2. SIE 506 – Quality Engineering (3 CH)
 3. SIE 565 – Supply Chain Management (3 CH)

c. Summer Semester
 i. SIE 909 – Masters Report (3 CH)

d. Third Semester (Fall)
 i. SIE 515 – Technical Sales and Marketing* (3 CH)
 ii. SIE 557 – Project Management* (3 CH)
 iii. SIE 554a – Systems Engineering Process (3 CH)

PLAN B: 18 month (Coursework Option)

e. First Semester (Fall)
 i. SIE 567 – Financial Modeling for Innovation* (3 CH)
 ii. SIE 530 – Engineering Statistics (3 CH)
 iii. SIE 554a – Systems Engineering Process (3 CH)
 iv. SIE 522 – Decision Making Under Uncertainty* (3 CH)

f. Second Semester (Spring)
 i. SIE 564 – Cost Estimation (3 CH)
 ii. SIE 514 – Law for Engineers and Scientists* (3 CH)
 iii. SIE 506 – Quality Engineering (3 CH)
 iv. SIE 565 – Supply Chain Management (3 CH)
g. Third Semester (Fall)
 i. SIE 515 – Technical Sales and Marketing* (3 CH)
 ii. SIE 557 – Project Management* (3 CH)
 iii. One of:
 1. SIE 654 – Advanced Concepts in Systems Engineering (3 CH)
 2. SIE 606 – Advanced Quality Engineering (3 CH)

PLAN C: 24 month (Masters Report Option)

h. First Semester (Fall)
 i. SIE 567 – Financial Modeling for Innovation* (3 CH)
 ii. SIE 522 – Decision Making Under Uncertainty* (3 CH)
 iii. SIE 554a – Systems Engineering Process (3 CH)

i. Second Semester (Spring)
 i. SIE 564 – Cost Estimation (3 CH)
 ii. SIE 514 – Law for Engineers and Scientists* (3 CH)
 iii. SIE 506 – Quality (3 CH)

j. Third Semester (Fall)
 i. SIE 515 – Technical Sales and Marketing* (3 CH)
 ii. SIE 557 – Project Management* (3 CH)

k. Fourth Semester (Spring)
 i. SIE 909 – Masters Report (3 CH)
 ii. SIE 565 – Supply Chain Management (3 CH)

PLAN D: 24 month (Coursework Option)

l. First Semester (Fall)
 i. SIE 567 – Financial Modeling for Innovation* (3 CH)
 ii. SIE 522 – Decision Making Under Uncertainty* (3 CH)
 iii. SIE 530 – Engineering Statistics (3 CH)

m. Second Semester (Spring)
 i. SIE 564 – Cost Estimation (3 CH)
 ii. SIE 514 – Law for Engineers and Scientists* (3 CH)
 iii. SIE 506 – Quality Engineering (3 CH)

n. Third Semester (Fall)
 i. SIE 515 – Technical Sales and Marketing* (3 CH)
 ii. SIE 557 – Project Management* (3 CH)
 iii. SIE 554a – Systems Engineering Process (3 CH)

o. Fourth Semester (Spring)
 i. SIE 565 – Supply Chain Management (3 CH)
 ii. One of:
 1. SIE 606 – Advanced Quality Engineering (3 CH) or
 2. SIE 654 - Advanced Concepts in Systems Engineering (3 CH)
3. MASTER OF ENGINEERING PROGRAM

The SIE Department participates in the Master of Engineering (MEng) degree program. In general, the MEng program is intended to serve the advanced educational needs of practicing engineers. Entrance requirements are similar to those of the MS program in SIE. Degree requirements include 30 units of study, with 3 units in engineering management/business and engineering math. At most, 6 of these 30 units may be in the form of a practice-oriented project. For more information, see http://sie.engr.arizona.edu/master-engineering

4. PHD PROGRAM

The Doctoral program is designed for those individuals wishing to pursue research at an advanced level. Only those who have already demonstrated an ability to pursue independent and scholarly work should consider applying for this program.

Students must follow all procedures outlined in the handbook for Doctoral Candidates published by the Graduate College. The handbook is available on-line as well as on paper from the Student Academic Specialist and the Graduate College (see section 1.3).

4.1 Entrance Requirements

To be considered for admission to the Doctoral program, the candidate must have attained a Bachelor's in Systems Engineering, Industrial Engineering, or a related field. Other factors that will be considered are as follows:

- GPA in previous undergraduate work of at least 3.25 and graduate work of at least 3.50
- Letters of recommendation
- GRE scores of at least 153 (500) verbal, 159 (750) quantitative, and 700 / 5.0 analytical are expected. In addition, international students should submit TOEFL scores (at least 575) and TSE scores (at least 50). IELTS of 7 (No subject under 6).
- A match between faculty and student interests

4.2 Preparing the PhD Plan of Study

As soon as they arrive on campus, students see the Department Head or the Chair of the Graduate Studies Committee for referral to a tentative advisor. Before the student registers to take the DQE, he/she must file a Plan of Study. The plan is reviewed by the Graduate Studies Committee and forwarded to the Department Head, before being transmitted to the Graduate College by the Student Academic Specialist. Forms for this purpose are available on-line, from the Student Academic Specialist, or at the Graduate College. If the Plan of Study is approved at the department level, the Graduate Student Advisor sends it to the Graduate College Degree Check unit before the required Graduate College deadlines. If it is not approved at the college level, the form is returned to the student for changes and re-submission.

The Plan of Study is the student's contract with the university concerning specific course requirements that the student must satisfy before becoming eligible for the PhD degree. This includes a minimum of 54 units of course work, at least 36 of which must be SIE-type courses approved by the faculty advisor and the Graduate Studies Committee, plus at least 18 units of dissertation research. In addition, at least 21 units of the course work must be taken from the SIE Department. At most 3 units of independent investigation may also be included, provided the study covers a topic not available through normal courses, a tangible course project is submitted to the Graduate Studies Committee, and prior approval is obtained from the Graduate Studies Committee. SIE 900 Research units may not be counted toward a PhD Degree. No course counted toward a bachelor’s degree may be
counted toward Ph.D requirements. No course may be counted toward the requirements for more than two degrees (earned at UA or elsewhere). For example, a 400/500 level course that was counted toward the BS and MS degrees at UA or elsewhere cannot be counted toward the PhD in SIE. **Students must take at least two and no more than three units of SIE 695a. This class will be graded Pass/Fail. To fulfill this requirement, the student must attend the department seminars during each semester enrolled. Prior to completing the seminar requirement, the student must also give a research presentation to the class.**

Subject to the approval of the Graduate Studies Committee, course work applied toward a Master's degree may be applied toward the PhD as well. Research credit that was applied toward a Master's degree cannot be applied toward the PhD degree.

4.3 Minor Area and Foreign Language Requirement

All PhD students must choose at least one minor subject area. The purpose of choosing a minor is to add breadth to their training. Minors are normally taken outside the department, but students may petition the Graduate Studies Committee for minor courses within the department. A split minor between two departments is also possible. All selections are subject to the approval of the Graduate Studies Committee. The minor in SIE requires 12 units, split minors require 6 units from each area. Each department sets their minor requirements, some less units and some more. You must acquire a Minor Advisor before taking your minor coursework.

The SIE Department does not have a formal foreign language requirement.

4.4 Examinations and Performance Requirements

On the way to a PhD degree, students must pass three exams: the Doctoral Qualifying Exam, the comprehensive exam (both a written and an oral component), and the final oral defense exam. The purpose and format of these exams are given below, and further details are available in the handbook for Doctoral Candidates published by the Graduate College (see section 1.3).

4.4.1 Doctoral Qualifying Examination (DQE)

This examination is the principal comprehensive means whereby the faculty can assess the readiness of a student to undertake advanced graduate work beyond the Master of Science level. This exam encompasses the following fundamental areas:

- Probabilistic Models (covered in SIE 520)
- Engineering Statistics (covered in SIE 530)
- Optimization (covered in SIE 545)
- Linear Systems Theory (covered in SIE 550)

Equivalent courses at other institutions should provide sufficient background in these areas. In addition to the subject areas covered in these courses, the examination tests whether students have an integrated understanding of these topics and the ability to extend their knowledge.

Students must have a GPA of at least 3.50 in these courses (or their equivalent, as approved by the Graduate Studies Committee) to register for the DQE.

The exam is administered at the start of any semester in which at least four eligible students request it, but at least once a year (if requested). Each student is allowed two attempts to pass the DQE. It is emphasized that a pass or fail decision is based not only on performance in the DQE but also on grades in SIE courses and recommendations of the faculty. Anyone who fails the qualifier twice is required to withdraw from the PhD program. Further details are published prior to the exam, and this information may be obtained from the Student Academic Specialist.
Students are evaluated on their overall performance on all exam questions. The DQE area committees recommend whether a student receives the grade of “high pass,” “pass,” or “fail” in each DQE area, for approval by the faculty at the DQE evaluation meeting. Anyone who fails the entire DQE but receives a grade of “high pass” on specific sections of the exam does not need to retake those sections on the second attempt.

4.4.2 Comprehensive Examination

The purpose of the comprehensive examination is to determine whether the candidate has sufficient background for research in the field of the planned dissertation. Successful completion of the examination leads to formal admission to PhD candidacy.

The examination includes written portions covering the major and minor fields. Shortly after successful completion of the written portions, an oral examination is conducted by a committee appointed by the Dean of the Graduate College in consultation with the departments concerned.

The written portion of the exam covers material in the candidate's area of specialization and, when appropriate, on the student's projected dissertation subject. The oral portion of the exam is conducted by the committee members from the major and minor areas. It may include a presentation based on the proposed dissertation research. When the candidate asks a faculty member to be a member of her/his preliminary examination committee, a description of the proposed dissertation should be provided.

The oral comprehensive examination is held when sufficient course work has been completed, but it cannot be scheduled until the written portion has been successfully completed. The Graduate College does not record a student’s failure on the written portion of the exam. However, failure of the oral examination constitutes a failure of the preliminary examination and is so recorded. Administration of the oral comprehensive examination is governed by the Graduate College, and students should refer to the guidelines for Doctoral Candidates for regulations pertaining to this exam. Procedures for scheduling this exam are also detailed in that handbook (see section 1.3).

A student who has passed the oral comprehensive examination is recommended to the Graduate College for acceptance as a PhD candidate.

4.4.3 Final Oral Defense

When the doctoral candidate has met the required standards of scholarship and has documented the research in a dissertation, the candidate publicly defends the dissertation and answers any general questions related to her/his study. The exact time and place of the final examination must be announced publicly at least two weeks in advance. The examination is conducted by a faculty committee appointed by the Dean of the Graduate College in consultation with the major and minor departments. The presentation portion of the examination is open to the public. The Graduate College requires timely notice to schedule the final exam, and students should refer to the handbook for Doctoral Candidates for exact dates (see section 1.3).

Performance Requirements

a) Before signing up to take the Doctoral Qualifying Exam (DQE), a Ph.D. student must submit his/her Plan of Study. (The timeline for taking the DQE is established in point b below.)

b) Ph.D. students must take the DQE the first time that it is offered after he/she has completed two semesters of study in the Ph.D. program. A student failing to take the DQE by this time may be dismissed from the program.

c) A Ph.D. student retaking the DQE must do so the next time that it is offered.

d) A Ph.D. student must take the oral preliminary examination within 24 months of the first attempt at the DQE.
e) Each Ph.D. student must submit a progress report to his/her advisor by the end of each academic year (last day of final exams in the Spring semester). A progress report form will be provided to students by the SIE Student Academic Specialist in April of each year for this purpose. Based on this input, the Graduate Studies Committee (GSC) determines whether or not the student is making satisfactory academic progress. If the GSC determines that the student is not making satisfactory progress, they state a set of requirements and corresponding deadlines for the student to achieve to remain in the program. Students not meeting these additional requirements may be recommended to the Department Head and Graduate College for dismissal from the program.

4.5 Residence, Completion Time, and Dissertation Submission Requirements

To meet the minimum residence requirement, students must complete two regular semesters of full-time academic work in residence at the University of Arizona. In general, any semester during which a student is registered for at least 9 units of graduate course work or research is counted toward meeting the residence requirements. However, some special circumstances (such as an assistantship) may change the required number of units. More details are given in the Graduate Catalog (see section 1.3).

All requirements for the PhD degree, including the MS (if applicable), must be completed within a period of 5 years after passing the Comprehensive Exam, however all coursework must be within 10 years of your graduation date.

A final, hard-bound copy of the dissertation must be provided to the Student Academic Specialist for placement in the departmental library.

5. THESES AND DISSERTATIONS

The SIE faculty has approved the following policy on the inclusion of papers in MS theses and PhD dissertations. The SIE Department allows the inclusion of previously published and submitted work in the appendix of a graduate thesis or dissertation, with the following restrictions:

- The student must be a highly contributing author on all papers.
- Papers that have been submitted for publication to technical journals are appropriate for inclusion in the appendix (this includes accepted and published papers). The content becomes an integral part of the thesis/dissertation and becomes relevant for review and approval of the examining committee. The examining committee retains the responsibility for assessing the technical merit of the research and the original contribution of the candidate.
- The significance of the candidate's contribution should be assured by the first rule and by the committee's judgment as to the merit of the work and the candidate's performance in the oral defense.
- The majority of the examining committee members must not be co-authors with the student on the papers included in the appendix.

A final, CD copy of each thesis and dissertation must be provided to the Graduate Academic Advisor for placement in the departmental library.

6. CERTIFICATE PROGRAMS

6.1 Systems Engineering

The SIE Department offers a Graduate Certificate in Systems Engineering (which can lead to an MS degree). This can be taken on campus as well as online. The program offers valuable resources for any engineer responsible for the oversight, creation, or operation of a complex system. It provides essential education for systems engineers, design engineers, lead engineers, total-life-cycle engineers, senior software systems engineers,
and project managers seeking to increase their professional knowledge and advance their careers. Through this program, students learn how to ensure that a system satisfies its requirements throughout the entire system life cycle.

All course work for this certificate can be earned online as well as on campus. Degree requirements include four courses (12 units of study), of which three are required and one is an elective:

<table>
<thead>
<tr>
<th>Required courses</th>
<th>Elective (choose one)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE 550 (3 units)</td>
<td>SIE 530 (3 units)</td>
</tr>
<tr>
<td>SIE 554A (3 units)</td>
<td>SIE 564 (3 units)</td>
</tr>
<tr>
<td>SIE 531 (3 units)</td>
<td>SIE 540 (3 units)</td>
</tr>
</tbody>
</table>

If you have taken the undergraduate version of any courses for your BS degree, you can NOT take them again for credit on your MS degree.

Prerequisites for this program are as follows:

- A bachelor’s degree in mathematics, physics, or engineering
- Two years of professional experience beyond the undergraduate level

Students must apply to the certificate program before registering for classes. Once they are admitted to the program, other required UA admission forms and complete registration information are furnished. Details are available on www.sie.arizona.edu

6.2 Engineering Management

The SIE Department offers the Graduate Certificate in Engineering Management (which can lead to an MS degree). The program is intended for technical professionals who desire the knowledge and skills to effectively manage resources in technology-based organizations. Students develop an understanding of decision making theory and methodology, financial modeling and analysis and project management strategies. They learn to utilize modern software packages to efficiently and effectively manage human and material resources. Through this program, students enhance their opportunities to advance in their careers. All course work for this certificate is available via on campus or online.

The courses are official UA on-campus classes, recorded on web. Degree requirements include four courses (12 units of study), of which three are required and one is an elective:

<table>
<thead>
<tr>
<th>Required courses</th>
<th>Elective (choose one)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE 567 (3 units)</td>
<td>SIE 506 (3 units)</td>
</tr>
<tr>
<td>SIE 557 (3 units)</td>
<td>SIE 515 (3 units)</td>
</tr>
<tr>
<td>SIE 522 (3 units)</td>
<td>SIE 531 (3 units)</td>
</tr>
<tr>
<td></td>
<td>SIE 540 (3 units)</td>
</tr>
<tr>
<td></td>
<td>SIE 564 (3 units)</td>
</tr>
</tbody>
</table>

The elective credits MUST be selected with the approval of an advisor and the Graduate Study Committee. If you have taken the undergraduate version of any courses for your BS degree, you can NOT take them again for credit on your MS degree.
Students are required to have a minimum of a BS in math, physics, chemistry, or engineering. The required minimum GPA is 3.0. One university-level introductory course in probability and statistics is recommended. SIE 500 provides a review of this and related material.

Students must apply to the certificate program before registering for classes. Once they are admitted to the program, other required UA admission forms and complete registration information are furnished. Details are available on our website, www.sie.arizona.edu.

7. MINOR IN SIE

Graduate students in a PhD program in any department of the university may choose a minor in Systems and Industrial Engineering. Students intending to minor in SIE should contact the Chair of the SIE Graduate Studies Committee at the earliest possible date. Courses taken to satisfy the requirements for a PhD minor in SIE are subject to the approval of the SIE Graduate Studies Committee.

The PhD minor in SIE consists of 12 units of regular SIE course work. A minor that is split between SIE and another department requires 6 units of regular SIE course work. Students are required to maintain a 3.0 or higher in the SIE course work. In consultation with the major advisor, the student forms a “minor” committee consisting of one SIE faculty member. These individuals assist the student and the major advisor in developing and coordinating the student's minor program of study consistent with her/his educational and career goals. The format of the written portion of the preliminary examination is at the discretion of the minor advisor. Participation on the oral portion of the preliminary examination and the final defense is at the discretion of the minor advisor.

8. FINANCIAL ASSISTANCE

8.1 Graduate Teaching and Research Assistantships

Financial assistance is available from the SIE Department in limited amounts, in the form of Graduate Teaching Assistantships (GTAs) and Graduate Research Assistantships (GRAs). Online students are NOT eligible for Graduate Teaching or Research Assistantships.

GTAs are allocated on a competitive basis, with priority given to entering students who exhibit outstanding potential and to continuing students who are making satisfactory progress toward their advanced degree objectives. Factors that the faculty consider as guidelines for satisfactory progress include maintaining an adequate GPA, the prompt and successful completion of the DQE, and passing the Preliminary Examination within two semesters of passing the DQE. GTAs are normally provided for a maximum of three semesters for a student in an MS degree program, or for a total of six semesters for a student pursuing a PhD. In accordance with university policy, students from countries in which English is not the primary language of instruction are required to pass the Test of Spoken English (TSE) with a score of at least 50 in order to receive a GTA.

In addition to the GTAs, a limited number of Graduate Research Assistantships (GRAs) are available for students who are exceptionally well-prepared to aid faculty research activities. Funding decisions on GRAs rest directly with those faculty members who have grant money available. Interested students should discuss the availability and requirements for GRA funding with the appropriate faculty members.

Although graduate assistantships are reserved for the most qualified students and for the purpose of providing financial support to meet specified needs, they are not a service-free fellowship or scholarship. The assistantship is contingent on the student employee meeting certain responsibilities in order to draw pay from the University of Arizona. In addition, graduate students in the College of Engineering who are supported...
through a GTA that is less than half-time or a GRA are expected to enroll in at least 12 units each semester. GTAs who have half-time appointments must enroll in at least 9 units each semester. All GRA’s must enroll in at least 12 units each semester. In addition to the stipend, all GRAs and GTAs automatically receive out-of-state tuition waivers, if applicable.

Because the Graduate College has no way of checking on the performance of a graduate assistant's duties, the SIE Department reports any unsatisfactory academic performance to the Graduate College. The department also reports to the Graduate College any situation in which a graduate assistant leaves the campus, stops attending classes, or fails in any way to perform assigned duties. This does not apply, of course, to any case in which the graduate assistant misses a few days of service because of illness or other justifiable cause, if satisfactory arrangements have been made within the department to ensure the completion of assigned duties.

8.2 Graduate Registration and Tuition Scholarships

Each semester the SIE Department receives a limited number of registration and tuition scholarships. These are not available to online students. The registration scholarship waives registration fees only (it does not include the Recreation Center Fee or the Financial Aid Trust Fee). To be eligible, a student must be enrolled in a graduate degree program for 12 or more graduate units, be in good academic standing, and have a GPA of 3.50. The tuition scholarship waives non-resident tuition only. To be eligible, a student must be a non-resident of Arizona, be enrolled in a graduate degree program for 12 or more graduate units, be in good academic standing, and have a GPA of 3.50.

Students may apply for the scholarships through the Student Academic Specialist. An application must be submitted every academic year; this scholarship does not roll over automatically. Preference is normally given to advanced PhD students.

8.3 Graduate Fellowships

A limited number of fellowships are available for excellent students. These awards may be limited to U.S. citizens or those who can substantiate an intent to reside in the United States.

9. RECENT PHD DISSERTATION TITLES

Meng, Chao, *Simulation-based Decision Support for Grafted Seedling Supply Chain Performance Improvement*. 2015

Xu, Dong. *An Integrated Simulation, Learning and Game-theoretic Framework for Supply Chain Competition.* 2014

Xie, Wei. *Reliability and Service Logistics Management for a New Product.* 2013

Zhao, Jiayun. *Simulation-Based Decision Support System for Integrated Analysis of High-Penetration PV and PHEV with Demand-Side Management.* 2013

Xi, Hui. *A DDDAS-based Multi-Scale Framework for Pedestrian Behavior Modeling and Interactions with Drivers.* 2013

Celik, Nurcin. *Integrated Decision Making for Planning & Control of Distributed Manufacturing Enterprises Using Dynamic-Data-Driven Adaptive Multi-Stage Simulations (DDDAMS).* 2010

Chan, ChiPak. *Large Scale Evacuation of Carless People During Short and Long-Notice Emergency.* 2010

10. FACULTY MEMBERS 2015-16

MICHAEL J. ARNOLD, Professor of Practice

B.S. Chemical Engineering, University of Arizona, May 1972
M.S. Chemical Engineering, University of Arizona, May 1977
Founder & CEO 1978 – 2001 Modular Mining Systems

AREAS OF INTEREST

SELECTED PUBLICATIONS

DONALD BRUYERE, Adjunct Professor

Ph. D. - University of Arizona, Tucson – Radar Signal Processing (Optics Minor)
M.B.A. - California State University of Northridge
M.S.E.C.E. - University of California at Santa Barbara
B.S.E.E. - University of Washington, Seattle
A.A.S – S.U.N.Y. Canton A.T.C.

AREAS OF INTEREST - Image sensing and analysis

SELECTED PATENTS
“Directional Gradient Magnitude Second Moment Variance Detection Radar” - Nov 9, ‘10, (7,830,300 B2)

SELECTED PUBLICATIONS
“Adaptive Detection and Diversity Order in Multistatic Radar”, IEEE TAES, Oct ’08
“Optimum and Decentralized Detection for Multistatic Airborne Radar”, IEEE TAES, Vol. 43, No. 2, Apr ’07
“SINR Improvements In Multi-Sensor STAP”, IEEE Conf on Antennas, Radar, and Wave Prop., July ’05

NENG FAN, Assistant Professor

Ph.D., Industrial and Systems Engineering, University of Florida, 2011.
M.S., Applied Mathematics, Nankai University, China, 2007.
B.S., Computational Mathematics, Wuhan University, China, 2004.

AREAS OF INTEREST
Integer programming and Combinatorial Optimization, Stochastic Programming and Robust Optimization, Energy Systems Modeling and Optimization, Data Mining and Healthcare Management

SELECTED PUBLICATIONS

ROBERTO FURFARO, Assistant Professor

Professor Furfaro holds a joint appointment in the Aerospace and Mechanical Engineering Department
MS, M.S., Aerospace Engineering, University of Rome "La Sapienza"
PhD, Aerospace Engineering, University of Arizona

AREAS OF INTEREST

SELECTED PUBLICATIONS

JEFFREY B. GOLDBERG, Dean, College of Engineering

BS, Operations Research & Industrial Engineering, Cornell University
ME, Operations Research & Industrial Engineering, Cornell University
PhD, Industrial & Operations Engineering, University of Michigan

AREAS OF INTEREST
Applied optimization modeling and solution. Examples include determining optimal or near-optimal base locations for emergency vehicles and general location models. I am also interested in engineering education issues including effective classroom instruction, strategies for distance learning, and increasing gender and racial diversity in engineering programs.

SELECTED PUBLICATIONS

LARRY HEAD, Professor

B.S., Systems Engineering, The University of Arizona 1983
M.S., Systems Engineering, The University of Arizona 1985
Ph.D., Systems & Industrial Engineering, The University of Arizona 1989
AREAS OF INTEREST

SELECTED PUBLICATIONS

Sen, S. and K. L. Head, "Controlled Optimization of Phases (COP) at an Intersection," Transportation Science, Vol. 1, No. 31, February 1997, pp. 5-17..

PAVLO KROKHMAL, Professor
M.S., Applied Mathematics and Mechanics, Kyiv National Taras Shevchenko University (Kyiv, Ukraine), 1996
Ph.D., Mechanics of Solids and Applied Mathematics, Kyiv National Taras Shevchenko University (Kyiv, Ukraine), 1999

AREAS OF INTEREST
Stochastic optimization, decision making under uncertainty, risk analysis, financial engineering, renewable energy, cooperative control and decision making, multidisciplinary optimization

SELECTED PUBLICATIONS

ROBERT G. LEPORE, Director Engineering Management
B.S. Engineering, University of California, Los Angeles June 1976
M.S. Electrical Engineering, University of California, Los Angeles June 1978
VP Engineering, Raytheon Missile Systems 2006 – 2012 Modular Mining Systems
Deputy VP Engineering, Raytheon Missile Systems 2005 - 2006
Chief Engineer Exo Atmospheric Kill Vehicle, Raytheon Missile Systems 2001- 2005
Manager Electro-Optical Center, Raytheon Missile Systems 1997- 2001

AREAS OF INTEREST
Systems Engineering, Electro-Optical Sensors, Signal Processing, Tracking Systems

SELECTED PATENTS
“Forced Correlation Mixed Mode Tracking System” 1990
“Directional Running Average Segmentation” 1993

WEI LIN, Associate Professor
BS, Computer Science, Brigham Young University
MS, Mathematics, Rensselaer Polytechnic Institute
PhD, Civil Engineering, University of California at Berkeley

AREAS OF INTEREST
Traffic flow theory, transportation network analysis and modeling, application of advanced technologies in transit operations, and application of computer simulation to transportation analysis, logistics systems.

Editorial Board: Intelligent Transportation Systems Journal, Transportmetrica.

SELECTED PUBLICATIONS

JIAN LIU, Associate Professor

Ph.D., Mechanical Engineering and Industrial and Operation Engineering, University of Michigan, 2008.

M.S., Industrial Engineering, University of Michigan, 2005.

M.S., Precision Instruments & Mechanology, Tsinghua University, China, 2002.

B.S., Precision Instruments & Mechanology, Tsinghua University, China, 1999.

AREAS OF INTEREST

Quality Engineering and Applied Statistics, multivariate statistics, statistical process control (SPC), reliability engineering, design of experiments, in-process quality and productivity improvement, applied data mining.

SELECTED PUBLICATIONS

MICHAEL C. O’BRIEN, Lecturer

B.S. Systems Engineering, University of Arizona, May 1991

M.S. Industrial Engineering, University of Arizona, May 1996

Director of Supply Chain Management 2010 – 2015 Verizon Wireless

Manager Supply Chain Solutions 1996 – 2010

Sr. Engineer 1991 – 1993 EG&G Idaho (Idaho National Engineering Lab)

AREAS OF INTEREST

Practice of Operation’s Research, Forward Logistics, Reverse Logistics, Supply Chain Strategy, Supply Chain Automation,
the practice of Industrial Operations Research.

SELECTED PUBLICATIONS

YOUNG-JUN SON, Department Head and Professor

BS, Industrial Engineering, Pohang University of Science and Technology (POSTECH), Korea
MS, Industrial and Manufacturing Engineering, The Pennsylvania State University
PhD, Industrial and Manufacturing Engineering, The Pennsylvania State University

AREAS OF INTEREST
Application of distributed and hybrid simulation to the analysis and control of systems of systems (e.g. extended manufacturing enterprises, renewable energy network, homeland security, social network): (1) integration of multi-paradigm simulations (discrete event, system dynamics, agent-based modeling), (2) time and event synchronization among horizontal simulations, (3) information synchronization among vertical simulations, (4) impact analysis. Shop floor control architecture design: (1) Intelligent control architecture embedding simulation and adaptive scheduling methods, (2) hybrid control architecture considering performance and disturbances, (3) real-time decision-making in multi-hierarchies, (4) control model development from process plan models.

Editor-in-Chief of the International Journal of Services Operations and Informatics
Department Editor of Design and Manufacturing Focus Issue for IIE Transactions
Associate Editor, International Journal of Modeling and Simulation
Associate Editor, International Journal of Simulation and Process Modeling
IIE Fellow
IIE (Institute of Industrial Engineers) 2005 Outstanding Young Industrial Engineer Award
SME (Society of Manufacturing Engineers) 2004 M. Eugene Merchant Outstanding Young Manufacturing Engineer Award
Best Paper of the Year Award in 2007 from International Journal of Industrial Engineering

SELECTED PUBLICATIONS

RICARDO VALERDI, Associate Professor
B.S./B.A., Electrical Engineering, University of San Diego 1999
M.S., Systems Architecture and Engineering, University of Southern California 2002
Ph.D., Systems and Industrial Engineering, University of Southern California 2005
A.L.M., Psychology, Harvard University 2014

AREAS OF INTEREST
Cost Estimation, Parametric Modeling, Economic Analysis of Large-Scale Systems, Model-Based Systems Engineering,
Systems Thinking, Organizational Performance Measurement, Enterprise Transformation, Research Methodology, Test and Evaluation, Behavioral Economics, Baseball Analytics

SELECTED PUBLICATIONS

AFFILIATED FACULTY (Joint Appointments and Emeriti)

TERRY BAHILL, Professor Emeritus
B.S., Electrical Engineering, University of Arizona
M.S., Electrical Engineering, San Jose State University
Ph.D., Electrical Engineering & Computer Science, University of California, Berkeley
Fellow of the Institute of Electrical and Electronics Engineers (IEEE)
Fellow of the International Council on Systems Engineering (INCOSE)
Raytheon Fellow

AREAS OF INTEREST
Modeling Physiological Systems: experiments and modeling analysis of the human arm, head and eye movement systems, with applications to clinical medicine and the science of baseball.
Knowledge Engineering: computer techniques for verifying and validating decision support systems.
Systems Engineering: system design, systems theory, concurrent engineering, requirements development, functional and object-oriented modeling, sensitivity analyses, tradeoff studies, etc.
Editor, CRC Press Series in Systems Engineering.
Associate Editor, Systems Engineering The Journal of INCOSE.

SELECTED PUBLICATIONS

ROBERT L. BAKER, Associate Professor Emeritus

BS, Civil Engineering, University of Arizona
MS, Computer Science, Texas A & M University
PhD, Operations Research, Texas A & M University

AREAS OF INTEREST

Economic analysis, financial strategies, retirement strategies, estate protection, cash flow analysis, and comparison of economic alternatives.

MOSHE DROR, Professor (Joint with Department of Management Information Systems)

MSc, Mathematical Methods in Engineering, Columbia University
IE (Prof Engr), Columbia University
PhD, Management Science, University of Maryland

AREAS OF INTEREST

Combinatorial and information systems, applied combinatorial optimization in transportation logistics and manufacturing, agent-based systems and distributed solutions for information and operations management, cooperative game theory, and cost allocation in inventory

SELECTED PUBLICATIONS

WOLFGANG FINK, Associate Professor and inaugural Edward & Maria Keonjian Endowed Chair (Joint with Department of Electrical and Computer Engineering)

B.S.: Physics, University of Göttingen, 1990
M.S.: Physics and Physical Chemistry, University of Göttingen, 1993
Ph.D: Theoretical Physics ("summa cum laude"), University of Tübingen, 1997

AREAS OF INTEREST

DaVinci Fellow 2015
AIMBE Fellow 2012
IEEE Senior Member 2015
NSBE Faculty Advisor UA 2014 - present

14 issued patents to date in the areas of autonomous systems, biomedical devices, neural stimulation, MEMS fabrication, and multi-dimensional optimization.
Co-recipient of R&D 100 Award in 2009
Co-recipient of R&D 100 Editors' Choice Award in 2009
NASA Board Award 2009

SELECTED PUBLICATIONS

WILLIAM R. FERRELL, Professor Emeritus

BA, English Literature (honors), Swarthmore College
SB, Mechanical Engineering (honors), MIT
SM, Mechanical Engineering, MIT
ME, Mechanical Engineering, MIT
PhD, Mechanical Engineering, MIT
AREAS OF INTEREST
Modeling and measuring human performance in information processing tasks such as probability assessment, decision making, diagnosis, and inspection; design of methods and systems to augment human performance as in expert systems and responsive computer interfaces.

Departmental Editor for Judgmental and Probabilistic Methods, *Journal of Forecasting.*
Editorial Board Member, *Journal of Behavioral Decision Making.*

SELECTED PUBLICATIONS

JOHN S. RAMBERG, Professor Emeritus
BS, Electrical Engineering (Industrial Engineering Option), University of Minnesota
MS, Operations Research, Cornell University
PhD, Engineering Statistics, Cornell University
Fellow, American Statistical Association, American Society for Quality Control, and Institute of Industrial Engineers.

AREAS OF INTEREST
Engineering statistics, with emphasis on six sigma quality implementation issues (engineering experiment design, quality engineering, and management simulation).

SELECTED PUBLICATIONS

DONALD G. SCHULTZ, Professor Emeritus
BS, Electrical Engineering, University of Santa Clara
MS, Engineering, University of California at Los Angeles
PhD, Electrical Engineering, Purdue University

AREAS OF INTEREST
The use of control theory and optimization for the solution of practical engineering problems. Applications include a variety of areas, such as the crushing of ore, the optimal control of insects in cotton, the prediction of engineering manpower requirements, and the on-line digital control of nuclear rocket engines. The underlying factors common to all of these areas are the need for mathematical modeling and the desire to optimize a quantitative performance index.

SELECTED PUBLICATIONS

SUVRAJEET SEN, Professor Emeritus

BE, Mechanical Engineering, Birla Institute of Technology and Science, Pilani, India
MS, Industrial Engineering and Engineering Management, University of Louisville
PhD, Industrial Engineering and Operations Research, Virginia Polytechnic Institute and State University

AREAS OF INTEREST
Optimization theory: Large scale and stochastic programming, nonlinear and disjunctive programming. Applied mathematical modeling: Production planning, telecommunications, power systems, and traffic networks.
Area Editor for Optimization, Operations Research
Associate Editor, INFORMS Journal in Computing
Associate Editor, Telecommunications Systems

SELECTED PUBLICATIONS

“Controlled Optimization of Phasers (COP) at Intersection” (with K.L. Head), *Transportation Science* 31: 5-17 (1997).

“An Introductory Tutorial on Stochastic Linear Programming: Modeling” (with J.L. Higle), accepted for publication in *Interfaces* (n.d.).

DAOQIN TONG, Associate Professor (Joint with School of Geography and Development)

BS, Civil Engineering, University of Shanghai for Science and Technology, China
MS, Civil Engineering, The Ohio State University
MAS, Statistics, The Ohio State University
PhD, Geography, The Ohio State University

AREAS OF INTEREST
Spatial optimization, location analysis and modeling, GIS, spatial statistics, transportation, food access

SELECTED PUBLICATIONS

